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1. Introduction 

A sample survey of any magnitude usually 
involves at least one stage of cluster sampling. 
Most often inherent to this type of design are 
correlated observations. These correlations 
are dependent, for example, on how the data is 
classified. If, say, only cluster means or 
totals, or some combination of them, are to be 

used as observations, then the correlations 
will be zero. However, if units from the same 
cluster are contained in different observations 
then non -zero correlations will probably exist. 
Also inherent to large surveys is the problem 
of inequality of variance - -many times extreme 
inequality. Surveys such as those conducted by 
the National Center for Health Statistics and 
the Bureau of the Census yield data of this 
type. 

This paper treats a common special case 
where the data in question fits a two -way 
classification model with one observation per 
cell. An extension to more than two variables 
would be theoretically no more difficult. 

2. Statistical Model 

The "usual" two -way classification model 
with one observation per cell is of the form r, 
where the error terms are independently and 
identically distributed, 

r: 
iid 

eli N_(0, 

= = 0 

but the model we shall consider is of the form 
r', where the error terms are not all independent 
and do not all have the same variance. 

r': 

= + 

d N(0,a2tt) 

0 for some (i, j) (i', j') 

= = 

or in matrix notation 

Y =X'ß+ e 

r': e N (0, E) 

Fat =Eß1 = 
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3. Analysis 

By appealing to the asymptotic properties 
of estimators in large samples it seems reason- 
able to assume we can make "good" estimates of 
the covariance matrix E. Or that at least we 
can make good estimates of the ratios of the 
components of E; i.e., estimate C, where 
E = a2C. 

There are pros and cons for each of these 
two estimates. If we assume E is "known," then 
we have one degree of freedom to test for 
interactions, which is, of course, desirable. 
However, this test is generall very sensitive 
to any error in the estimate, of E. For 
example, any bias in , is directly reflected 
in the mean square (MS) used to test for 
interactions. Also the magnitude of the MS, 
which is the X2- statistic of interest, is 

heavily dependent on the magnitude of the 
observations. Therefore, a very small relative 
difference in the observations may result in a 
large MS. 

On the other hand, if we assume that only 
the ratio matrix C is known and that there are 
no interactions and use an F -test, then any bias 
is immediately removed by the F- ratio. However, 
if significant interactions do exist then any 
inferences we may make concerning the main 
effects may not be correct. 

A very practical solution to this problem 
would be to start the analysis under the model 
r ", where r" differs from r' through the addition 
of a set of interaction terms NO. 

+at + 
d 

0 for some (i, j) j) 

=Eß1 =0 
j 

Then assume we know E and use a X2- test for 
interactions. Under these assumptions one could 
also test main effects using the X2 -test. But 
for reasons mentioned previously this is not done. 
After making this one test abandon r and assume 
r'. Now assume C is known and use F -tests to 
make inferences about the main effects. This 
procedure will give a test for interactions 
(which should not be interpreted too literally) 
and hence, a better insight into the validity of 
tests on main effects which assume an additive 
model. 

Two additional qualifications should be 
made concerning the test for interactions. 
First, the MS used as the X2- statistic in this 
test not only contains interaction effects but 
also the random error component of the model. 



And secondly, when significant 
interactions exist one should consider main 
effects to be "different" even if tests 
involving these effects are not significant. 
The reasoning being that when the effects of the 
levels of one factor are averaged over the 
levels of the other, no difference of these 
"averaged" effects has been shown. 

Now to consider the working theory of 
the procedure, let us continue by assuming 
estimates are made for qa elements of E. We 
know from matrix algebra that there exists a 
non -singular matrix P, such that P'EP = I. 
Then if we transform the observations and the 
design matrix according to P; i.e., let 

= 

W= P X 

the vector Z satisfies 

=Wß+ e 

e N (o, I) 

= = 

I comment here that the obtained under 
r" have the same expected value as those 
obtained under r'; so no change in notation is 
made. 

To estimate we now need to minimize 
the following SS with respect to ß: 

or 

S = (Z - (Z - W'ß) 

ij 

S = (Y - E (Y - Xßß) 

And since this minimum is the L.S. estimate w 
need only solve the modified normal equations 

-1 -1 -1 
= (XE X' + me) XE Y 

where the matrix H incorporates into the 
solution the side conditions Eat = Eß, = 0; 
i.e., H'ß = O. 

Similarly for the row and column 
hypotheses we have the solutions 

ßHR + Y 

ß (X 
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where the matrices , , , and 
H 

are 
R 

obtained by deleting the rows of X and H that 
correspond to the hypothesis in question. 

The SS's needed for the tests of 
hypothesis are found by first substituting 
these parameter estimates into the equations 

S = (Y - - Xßß) 

SR - 

SC (Y X "E 1(Y 

and we obtain 

SSRow =SR -S 

SSCol SC S E 

SS =S 
e 

The above inequalities are pointed out 
because under r these inequalities become 
equalities. This follows from the fact that 
even though r and appear to be the same, the 
design matrix under is such that the estimates 
of and under the hypotheses are not 
necessarily the same as when no hypotheses are 
imposed. Or geometrically we say that and 

are not necessarily from orthogonal spaces. 

It is possible that the SSRow and the 

SSCol might be negative for several reasons. 

(1) One of the matrices to be inverted may be 
"nearly" singular or "ill- conditioned." 
(2) Due to an error in estimation may not be 
positive definite. (3) Cumulative round -off 
error in the analytical program may introduce 
negative SS's. 

4. Example 

Let us now consider an example with 
observations and covariance matrix given on next 
page. Note that yl = 23.35, y2 = 1.13, ..., 

y9 = 3.08, 129.57, = 79.34, ..., 

2 

= 156.07. 

9 



Using the scheme developed above the 
ANOVA table obtained from these observations is 

then 

Source SS DF F -Ratio 
Row 47.27654 2 23.63826 15.92203 
Column 9.85925 2 4.92963 3.32045 
Error 5.93851 1.48463 

Suppose we wish to test at the 95% level. The 
first step in the analysis is then to compare 
the mean square for error with the tabled 

x -value with 4 d.f. and 95% confidence; i.e., 
X.05; 4 = 9.48773 for a one -sided test, or 

X 
2 

= .484419 and x = 11.1433 for a 
.975; 4 .025; 4 

two -sided test. 

Thus, in either case, we accept the hypothesis 
that there are no significant interactions. 
Next we compare the F- ratios corresponding to 

the row and column hypotheses to the tabled 
value F = 6.90013. 

.05; 2, 4 

We reject the hypothesis concerning row effects; 
i.e., we conclude there is a significant 
difference between rows. 

To see what effect small errors in the 
estimation of E have on the analysis let us 
hold the variances constant and change the 
covariances in four ways. The results are 
given on the following 3 pages, with the Ei's 
denoting changes in the original covariance 
matrix. 

If we assume independence and equal 
variances the ANOVA table is 

Source SS DF F -Ratio 
Row 121.38843 2 60.69421 0.52251 
Column 27.98560 2 13.99280 0.12046 
Error 464.63818 4 116.15955 

And we see that we change the conclusion 
regarding row differences to "not significant." 

Small errors in E change the F -value for 
rows from 1.2% under E1 to 13.2% under E. For 

the column F- values the changes range from 2.8% 
under E4 to 8.3% under E1. However, these 

respective changes are not nearly so severe as 
the 96.7% for rows and 96.4% for columns 
encountered when we assume independence and 
equality of variance. 

5. Summary of Emperical Work 

To summarize the emperical work that was 
done look at the set of detailed tables. 

Table 1 relates the sizes of the tables 
analyzed, the number of sets of data for each 

size, and the number of conclusions that were 

changed. By "number of conclusions changed" is 
meant the number of times the results of the 
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original tests of hypotheses were changed, first 
when an error was made in E, and second when 
independence and equal variance was assumed. 
For the 82 2 x 2 tables analyzed 1.2% of the 
row hypotheses and 1.2% of the column hypotheses 
were wrong when small errors were made in E as 
opposed to 11% and 18.3% when independence and 
equal variance was assumed. For the 101 
3 x 3 tables these respective percentages were 
12% and 3% as opposed to 50% and 12%, for the 
4 x 3 tables 0.0% and 2% as opposed to 20% and 
30%, for the 5 x 2 tables 4.8% and 0.0% as 
opposed to 19% and 10%, and for the 5 x 
tables 1.7% and 1.7% as opposed to 27% and 9%. 
Table 2 relates the average percent change in 
the F- statistics for the same data from which 
Table 1 was obtained. In interpreting Table 2 
if we would keep in mind that in standard 
F- tables a change of significance level from 

say 95% to 90% requires a change of about 25% 
in the tabled value, then these results might 
be more meaningful. From these two tables we 
see that though errors in E are not too 
serious, the assumption of independence and 
equal variance can lead to quite unreliable 
test statistics. 

For practical purposes it was hoped that 
small correlations (less than 10%) could be 
ignored. Emperically it was found that if 
variances are equal, little "harm" comes from 
ignoring small correlations and proceeding 
classically. For example, in Table 3 we see 
that for the 120 3 x 3 tables that were 
analyzed by assuming correlations of less than 
10% to be zero, only 4.1% of the conclusions 
reached were incorrect for the row hypotheses 
and 1.7% were incorrect for the column 
hypotheses. For the 40 4 x 3 tables analyzed 
these percentages were 2.5% and 0.0%, and for 
the 80 5 x 4 tables analyzed there were no 
incorrect conclusions. 

However, if variances are not equal 
(differences ranging from 2 to 100 times one 
another) and we proceed under the assumption of 
independence and equal variance, then a great 
deal of accuracy is lost as is seen in Table 
For example, for the 124 3 x 3 tables 
analyzed, 18% of the conclusions concerning row 
hypotheses were incorrect and 9% concerning 
column hypotheses were incorrect when 
correlations were less than 10%. These 
respective figures were 22% and 2.5% for the 
4 x 3 tables, 11% and 4% for the 5 x 2 tables, 
and 17% and 23% for the 5 x 4 tables. Most of 
these percentages would be considered outside 
the range of tolerance. 

In Table 5, however, we see that if we do 
take into account the unequal variances but 
ignore small correlations then the percentage 
of errors in conclusions is reduced to within 
practical tolerance limits. The respective 
figures are now 6% and 5% for the 3 x 3 tables, 
5% and 0.0% for the 4 x 3 tables, 2.5% and 0.0% 
for the 5 x 2 tables, and 2.5% and 2.5% for 



the 5 x tables. 

The significance of this result lies in 
the fact that variance and covariance estimation 
is quite tedious and time consuming in complex 
surveys. Therefore, any reduction in the 
number of calculations is usually worthwhile. 
Also, since the proposed method of analysis 
involves the inversion of the covariance matrix, 
if it can be reduced to diagonal form the 
accuracy of the analysis would be improved, 
especially for large numbers of observations. 

6. Concluding Remarks 

In concluding, I would like to say that 
this paper is written from a very practical 
point of view and any conclusions drawn should 
be interpreted with this in mind. Especially I 
mould like to re- emphasize the limitations 
and restrictions placed on the proposed test 
for interactions. At the same time, however, 
the emperical results presented in Tables 1 -5 
are in g eral supported by theory developed 
by Walsh in 1947 in which he considered a 
special case of the preceding problem in which 

= p for all i and j, and a? = for all i. 

Under these assumptions he found simple correc- 
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tion factors for the x2- and F- statistics 
calculated under the assumption of independence, 
i.e., 

1 

X true - P true independent 

F 
true - 1 p" F independent 

And these correction factors do in general 
support the emperical results presented in 
Tables -5. 
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129.57 

1.46 

0.02 

1.15 

-0.99 

-0.99 

0.24 

-0.21 

-1.19 

1.46 

79.34 

0.87 

-0.97 

2.02 

-0.06 

-0.37 

1.72 

-0.21 

C1 
C2 C3 

R1 23.35 1.13 1.18 

R 
2 

6.07 20.24 16.66 

R 
3 

1.81 11.49 3.08 

0.02 

0.87 

2.07 

-0.48 

-0.25 

0.20 

-0.01 

-1.19 

0.11 

1.15 

-0.97 

-0.48 

148.28 

0.84 

0.17 

0.26 

-0.08 

-0.30 

-0.99 

2.02 

-0.25 

0.84 

96.94 

1.68 

-0.54 

3.5o 

-0.71 

-0.99 

-0.06 

0.20 

0.17 

1.68 

3.32 

-0.54 

-1.09 

1.33 

129.57 1.53 0.02 1.24 -1.08 -1.09 

1.53 79.34 1.01 -1.13 2.37 -0.07 

0.02 1.01 2.07 -0.59 -0.31 0.25 

1.24 -1.13 -0.59 148.28 1.10 0.22 

-1.08 2.37 -0.31 1.10 96.94 2.3o 

-1.09 -0.07 0.25 0.22 2.30 3.32 

0.26 -0.45 -0.01 0.34 -0.74 -0.77 

-0.23 2.08 -1.53 -0.11 4.88 -1.56 

-1.36 -0.26 0.14 -0.41 -1.00 1.92 

0.24 -0.21 -1.19 

-0.37 1.72 -0.21 

-0.01 -1.19 0.11 

0.26 -0.08 -0.30 

-0.54 3.5o -0.71 

-0.54 -1.09 1.33 

1.02 0.55 1.02 

0.55 8.43 1.70 

1.02 1.70 156.07 

0.26 -0.23 -1.36 

-0.45 2.08 -0.26 

-0.01 -1.53 0.14 

0.34 -0.11 -0.41 

-0.74 4.88 -1.00 

-0.77 -1.56 1.92 

1.02 0.81 1.50 

0.81 8.43 2.51 

1.50 2.51 156.07 

SOURCE SUM OF SQUARES DF MEAN SQUARE F -RATIO 

ROW 48.20804 2 24.10402 16.10687 

COLUMN 10.75986 2 5.37993 3.59500 

ERROR 5.98602 4 1.49650 
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E 
2 

129.57 

0.44 

0.18 

0.34 

-0.22 

-0.25 

0.16 

-0.37 

-0.23 

0.44 

79.34 

0.19 

-0.28 

0.41 

-0.13 

-0.07 

0.52 

-0.16 

0.18 

0.19 

2.07 

-0.36 

-0.22 

0.34 

-0.14 

-0.23 

0.23 

0.34 

-0.28 

-0.36 

148.28 

0.75 

0.31 

0.19 

-0.55 

-0.32 

-0.22 

0.41 

-0.22 

0.75 

96.94 

0.81 

-0.27 

0.61 

-0.41 

-0.25 

-0.13 

0.34 

0.31 

0.81 

3.32 

-0.16 

-0.32 

0.48 

0.16 

-0.07 

-0.14 

0.19 

-0.27 

-0.16 

1.02 

0.21 

0.17 

-0.37 

0.52 

-0.23 

-0.55 

0.61 

-0.32 

0.21 

8.43 

0.63 

-0.23 

-0.16 

0.23 

-0.32 

-0.41 

0.48 

0.17 

0.63 

156.07 

SOURCE SUM OF SQUARES DF MEAN SQUARE F -RATIO 

ROW 50.66118 2 25.33058 17.40663 

COLUMN 9.23855 2 4.61928 3.17427 

ERROR 5.82090 1.45522 

129.57 0.23 0.10 0.18 -0.12 -0.14 0.09 -0.22 

0.23 79.34 0.12 -0.18 0.26 -0.08 -0.05 0.35 -0.11 

0.10 0.12 2.07 -0.25 -0.15 0.25 -0.10 -0.17 0.17 

0.18 -0.18 -0.25 148.28 0.58 0.25 0.15 -0.45 -0.27 

E3 = -0.12 0.26 -0.15 0.58 96.94 0.69 -0.23 0.54 -0.37 

-0.14 -0.08 0.25 0.25 0.69 3.32 -0.15 -0.30 0.46 

0.09 -0.05 -0.10 0.15 -0.23 -0.15 1.02 0.20 0.17 

-0.22 0.35 -0.17 -0.45 0.54 -0.30 0.20 8.43 0.63 

-0.14 -0.11 0.17 -0.27 -0.37 0.46 0.17 0.63 156.07 

SOURCE SUM OF SQUARES DF MEAN SQUARE F -RATIO 

ROW 48.69180 2 24.34590 16.81972 

COLUMN 9.18756 2 4.59378 3.17368 

ERROR 5.78985 4 1.44746 
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129.57 0.46 0.19 0.36 -0.24 -0.28 0.17 -0.41 -o.26 

0.46 79.34 0.22 -0.33 0.49 -0.16 -0.09 0.63 -0.20 

0.19 0.22 2.07 -0.45 -0.27 0.43 -0.18 -0.30 0.30 

0.36 -0.33 -0.45 148.28 o.99 0.41 0.25 -0.74 -0.44 

-0.24 0.49 -0.27 0.99 96.94 1.11 -0.37 0.86 -0.58 

-0.28 -0.16 0.43 0.41 1.11 3.32 -0.23 -0.47 0.70 

0.17 -0.09 -0.18 0.25 -0.37 -0.23 1.02 0.30 0.26 

-0.41 0.63 -0.30 -0.74 0.86 -0.47 0.30 8.43 0.93 

-0.26 -0.20 0.30 -0.44 -0.58 0.70 0.26 0.93 156.07 

SOURCE SUM OF SQUARES DF MEAN SQUARE F -RATIO 

ROW 52.60782 2 26.30391 18.02400 

COLUMN 9.42238 2 4.71119 3.22821 

ERROR 5.83753 It 1.45938 

TABLE 1 
(Number of Conclusions Changed When Original Data 
Had Non -Zero Correlations and Unequal Variances) 

Size of 
Table 
Analyzed 

Number 
ERROR 

INDEPENDENCE AND 
EQUAL VARIANCE 

of Data 
Sets 

Row 
Hypothesis 

Column 
Hypothesis 

Row 
Hypothesis 

Column 
Hypothesis 

2 x 2 82 1 1 9 15 

3 x 3 101 12 3 50 28 

4 x 3 5o o 1 10 15 

5x2 42 2 0 8 It 

5 x 4 6o 1 1 16 6 

TABLE 2 
(Average Absolute Percentage Change 

in F- Statistic for Data of Table 1) 

Size of 
Table 

Analyzed 

Number 
of Data 

Sets 

ERROR IN E 
INDEPENDENCE AND 
EQUAL VARIANCE 

Row 
Hypothesis 

Column 
Hypothesis 

Row 
Hypothesis 

Column 
Hypothesis 

2 x 2 82 3.0 4.o 72.o 91.5 

3 x 3 101 13.o 9.o 91.0 83.0 

4 x 3 5o 3.o 3.o 73.0 80.0 

5 x 2 42 4.o 8.5 46.5 92.0 

5 x It 6o 4.o 7.o 45.o 48.o 
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TABLE 3 
(Equal Variances Required and Small 
Correlations Assumed to be Zero) 

Size of 

Table 
Analyzed 

Number of 
Data 
Sets 

Correlation 
Coefficient 

(pij) 

NUMBER OF CONCLUSIONS CHANGED 
Row 

Hypothesis 
Column 

Hypothesis 

120 s.05 2 

3 x 3 120 5.10 5 2 

120 5.25 9 3 

40 s.05 
4 x 3 4o 1 o 

40 s.25 2 1 

8o 5.o5 

5 x 4 80 o o 
80 s.25 o o 

TABLE 4 
(Unequal Variances Not Taken into Account 
When Small Correlations Assumed to be Zero) 

Size of 
Table 
Analyzed 

Number of 
Data 
Sets 

Correlation 
Coefficient 

(pii) 

NUMBER OF CONCLUSIONS CHANGED 
Column 

Hypothesis 
Row 

Hypothesis 

126 s.05 15 4 

3 x 3 124 5.10 22 11 
42 s.25 4 3 

42 s.05 7 2 
4 x 3 42 9 1 

42 5.25 14 4 

84 s.o5 11 2 
5 x 2 84 9 3 

42 5.25 3 2 

84 s.o5 17 14 
5 4 105 18 24 

42 5.25 15 9 

TABLE 5 
(Unequal Variances Taken into Account When 
Small Correlations Assumed to be Zero) 

Size of 
Table 
Analyzed' 

Number of 
Data 
Sets 

Correlation 
Coefficient 

(pij) 

NUMBER OF CONCLUSIONS CHANGED 
Row 

Hypothesis 
Column 

Hypothesis 

80 s.05 3 3 
3 x 3 8o 5 4 

8o s.25 7 4 

40 s.05 2 0 
4 x 3 40 2 0 

4o s.25 4 1 

40 s.05 2 0 
5 x 2 40 s.10 1 0 

40 s.25 4 o 

80 s.05 2 0 
5 x 4 80 5.10 2 2 

s.25 7 7 
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